How to get started with Prism in 3 easy steps

In this post we explore the basics of Prism to create a mantainable and scalable WPF application.


How to get started

  1. Download the nuget Prims.Xyz package for your Platform: in this example for WPF (Prims.WPF and Prism.Unity) with Visual Studio;
  2. Create a bootstrapper;
  3. Edit App.xaml and App.xaml.cs files;
  4. (Bonus point) Reorganize our project.

With this procedure we are setting the foundation for our Prism-enabled app.

1. Download

With the Manage Nuget tool in Visual Studio download the following packages: Prims.WPF and Prims.Unity. Visual Studio will take care of the process and at the end we’ll have these packages installed:


2. Create a Bootstrapper

In our project we add a new Class. The name is not important but it has to derive from UnityBootstrapper.

using Microsoft.Practices.Unity;
using Prism.Unity;
using System.Windows;

namespace IC6.Prism
 class Bootstrapper : UnityBootstrapper
   protected override DependencyObject CreateShell()
    return Container.Resolve<MainWindow>();

 protected override void InitializeShell()

3. Edit App.xaml and App.xaml.cs files.

In our project we edit the App.xaml to remove the StartupUri attribute since now that part of the initialization is handled by Prism with Unity.

<Application x:Class="IC6.Prism.App"


In the code behind file (App.xaml.cs) we override the OnStartup method to implement our custom startup logic that leverages the Bootstrapper.

using System.Windows;

namespace IC6.Prism
 public partial class App : Application
   protected override void OnStartup(StartupEventArgs e)

    var bootstrapper = new Bootstrapper();

4. Bonus point

Since we’re using Prism to get the most from MVVM pattern (and other features) we are going also to better organize our project. We delete the MainWindow.xaml and its code behind files from the solution, then we create a new folder called Views and finally create a new Window called MainWindow inside. This is the result.


Back to school time

We’ve started this post with just code and not so much theory about what we are doing.

Why do we need a bootstrapper? A Prism application requires registration and configuration during the application startup process. This is known as bootstrapping the application. The Prism bootstrapping process includes creating and configuring a module catalog, creating a dependency injection container such as Unity, configuring default region adapter for UI composition, creating and initializing the shell view, and initializing modules.

In a traditional Windows Presentation Foundation (WPF) application, a startup Uniform Resource Identifier (URI) is specified in the App.xaml file that launches the main window.
In an application created with the Prism Library, it is the bootstrapper’s responsibility to create the shell or the main window. This is because the shell relies on services, such as the Region Manager, that need to be registered before the shell can be displayed.

Dependency Injection

Applications built with the Prism Library rely on dependency injection provided by a container. The library provides assemblies that work with Unity and it allows us to use other dependency injection containers. Part of the bootstrapping process is to configure. this container and register types with the container.


In this post we introduced Prims and made baby steps. With this approach we’re setting the architecure of our app to be scalable and mantainable. In the next posts we’ll go forward and learn other Prism foundamentals.


Dependency Injection:

Prism GitHub homepage:


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s